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ABSTRACT

TheRussianRiver in northernCalifornia is an important hydrological resource that typically depends on a few

significant precipitation events per year, often associated with atmospheric rivers (ARs), to maintain its annual

water supply. Because of the highly variable nature of annual precipitation in the region, accurate quantitative

precipitation estimates (QPEs) are necessary to drive hydrologic models and inform water management de-

cisions. The basin’s location and complex terrain present a unique challenge to QPEs, with sparse in situ ob-

servations and mountains that inhibit remote sensing by ground radars. Gridded multisensor QPE datasets can

fill in the gaps but are susceptible toboth the errors anduncertainties from the ingesteddatasets and uncertainties

due to interpolation methods. In this study a dense network of independently operated rain gauges is used to

evaluate gridded QPE from the Multi-Radar Multi-Sensor (MRMS) during 44 precipitation events occurring

during the 2015/16 and 2016/17 wet seasons (October–March). The MRMS QPE products matched the gauge

estimates of precipitation reasonably well in approximately half the cases but failed to capture the spatial dis-

tribution and intensity of the rainfall in the remaining cases. ERA-Interim reanalysis data suggest that the

differences in performance are related to synoptic-scale patterns and AR landfall location. These synoptic-scale

differences produce different rainfall distributions and influence basin-scalewinds, potentially creating regions of

small-scale precipitation enhancement or suppression. Data from four profiling radars indicated that a larger

fraction of the precipitation in poorly captured events occurred as shallow stratiform rain unobserved by radar.

1. Introduction

The Russian River carves a 177-km path through

Mendocino and SonomaCounties in Northern California,

providing water for hundreds of thousands of residents

and acres of agriculture, and a home for several endan-

gered or threatened species of salmon and trout. There-

fore, water managers in the basin must strike a balance

between flood mitigation, storage for residential and irri-

gation needs, and maintaining sufficient flows to sustain

the river’s ecosystem (Dettinger et al. 2011; Kingsmill

et al. 2006). Maintaining this balance can be challenging

because a significant portion of the basin annual pre-

cipitation falls during the wet season of October–March.

Up to 50% of the annual precipitation coincides with the

landfall of atmospheric rivers (ARs; see the appendix for a

list of acronym expansions), long (.2000km), narrow

(,1000km) corridors of strong poleward water vapor

transport typically found in the warm sector of an extra-

tropical cyclone (Dettinger et al. 2011; Ralph et al. 2006,

2013; Neiman et al. 2008; Lamjiri et al. 2017).

The strength and frequency of landfallingARs can vary

widely from year to year due to both seasonal variabil-

ity and variability in large-scale circulation patterns

(Gershunov et al. 2017; Mundhenk et al. 2016). North-

ern California relies on a relatively small number of

these high-impact storms for a significant portion of its

annual water supply, so a small increase or decrease in

annual landfalling ARs can quickly result in either

flooding or drought (Dettinger et al. 2011). Of the seven

flooding events that occurred in the Russian River basin

between 1997 and 2006, all occurred under landfalling

AR conditions (Ralph et al. 2006).

The decision to store or release reservoir water de-

pends on both antecedent and forecast precipitation and
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is typically informed by output from hydrologic models,

whose accuracy depends on the model forcings, es-

pecially quantitative precipitation estimates (QPEs).

QPEs represent the largest source of uncertainty in

hydrologic models due to the data used, interpolation

methods, and sampling issues, with a nonlinear re-

lationship between QPE errors and errors in modeled

streamflow output (Biemans et al. 2009; Gourley and

Vieux 2005; Daly et al. 2017).

For this reason, accurate QPEs in the Russian River

basin are crucial yet difficult to achieve (Willie et al. 2017).

TheRussianRiver lies between theMayacamasMountains

to the east and the Coastal Range to the west (Fig. 1a).

Although these ranges are less prominent [500–1500m

above mean sea level (MSL)] than the Sierra Nevada

farther east (.4km MSL), the complex topography of

the Russian River Valley interacts with the significant

low-level moisture transport found in ARs to cause oro-

graphic precipitation enhancement (Neiman et al. 2002;

Cordeira et al. 2017; Neiman et al. 2008). Even small-

scale orographic influences can produce large variations

in precipitation thatmaybe embeddedwithin larger-scale

orographic effects (e.g., an individual peakwithin a larger

range; Henn et al. 2018; Daly et al. 1994). Daly et al.

(2017) indicate that orographic effects on precipitation

are most important at scales of 5–10km. Such small-scale

areas of orographic enhancement or suppression can only

be seen by a dense observation network.

Remote sensing of precipitation by ground-based ra-

dars is one of the highest spatial and temporal resolution

sources ofQPEs available, however, the complex terrain

of the region interferes with these observations. The

Russian River basin is over 100 km from the nearest

National Weather Service (NWS) operational weather

radar (WSR-88D) at Sacramento (KDAX), and the

beam of the lowest-angle scans from KDAX is mostly

blocked by the terrain (Figs. 1b,c; Maddox et al. 2002;

Matrosov et al. 2014). Since the rainfall associated with

landfalling ARs often occurs within shallow stratiform

systems (White et al. 2003), radar beams that are high

enough to see over the topography are often also high

enough to pass over the top of shallow stratiform rain-

fall. In less-shallow precipitating systems, higher parts

of the cloud will be sampled, resulting in biases in the

estimated surface rainfall (Matrosov et al. 2014; Fabry

et al. 1994; Villarini and Krajewski 2010).

FIG. 1. (a) Location and terrain of the Russian River basin. Locations of HMT gauges used as reference in this

study are shown by red circles, with relevant locations discussed in the text labeledwith their three-letter identifiers.

HMT gauges markedwith purple squares indicateHMT gauge locations with collocated profiling radars. Locations

of HADS gauges used in theMRMSQPE are indicated by black ‘‘X’’s. Range rings for the two nearest operational

radars are indicated in gray [100 km (solid) for KDAX to the west and 150 km (dashed) for KMUX to the south].

BBR for KDAX (b) 0.58 and (c) 0.98 elevation scans. KDAX is located approximately due east of Santa Rosa [STR

in (a)]. The 100-km range in (b) and (c) corresponds to the solid gray line in (a).
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To capture the small-scale impacts of topography on

precipitation, a dense network of observing sites is nec-

essary (Henn et al. 2018). The Physical Sciences Division

at the National Oceanic and Atmospheric Administra-

tion’s Earth Systems Research Laboratory (NOAA/

ESRL/PSD) operates gauges in the Russian River Valley

as part of the Hydrometeorology Testbed–West (HMT)

legacy network. PSD also maintains an archive of data

from gauges operated by the Russian River Habitat

Blueprint Network (RRHBN) and Western Weather,

providing 33 gauge-based rainfall estimates in theRussian

River basin (collectively referred to as the HMT net-

work hereafter). The largest distance between HMT

gauges in the Russian River basin is 18.5 km, with an

average separation of 4.5 km. The gauge site elevations

range from 29m MSL at Sebastopol to 972m MSL at

Middletown (BTO and MDT in Fig. 1a, respectively).

While the HMT gauges comprise a relatively dense

network, they do not cover the basin in its entirety; like

most gauge-based networks, they somewhat under-

sample the highest elevations. Nevertheless, they make

up a relatively dense, independent network that can

provide insight on the effects of small-scale topographic

features on precipitation.

QPEs in these areas rely on high-resolution gridded

products that interpolate between gaugeobservations and/

or incorporate multiple sources of QPE into a single pre-

cipitation estimate. TheMulti-RadarMulti-Sensor (MRMS;

Zhang et al. 2011, 2016) QPE is one such product, pro-

viding high-resolution (hourly, ;1km) gridded QPEs

combining data from gauges, radars, and statistical re-

lationships between elevation and precipitation.Here, we

evaluate a subset of the MRMS products against the

HMT gauges (which are independent of the gauges used

to produce the MRMS) at the HMT gauge locations to

examine howwell the gridded products capture the small-

scale variations in precipitation due to topography.

MRMS QPEs are evaluated for 44 events that occurred

during the 2015/16 and 2016/17 wet seasons (October–

March) in the Russian River basin. These seasons are of

interest because of the expected, but absent, heavy pre-

cipitation during the strong 2015/16 El Niño, and the

unexpected record precipitation during the weak 2016/

17 La Niña. Patterns for the MRMS behavior due to

synoptic-scale, mesoscale, and storm-scale characteristics

will be discussed.

2. Data

a. MRMS QPE

The MRMS QPE products are produced operationally

at the National Centers for Environmental Prediction

(NCEP) and distributed to NWS forecast offices and

several external agencies. MRMS combines estimates of

precipitation from various observational networks to

produce hourly rainfall estimates on a 0.018 grid (Zhang

et al. 2011, 2014, 2016). MRMS products may incorporate

information from both U.S. and Canadian operational

radar networks, gauge data, climatology, and environ-

mental output fromnumerical weather predictionmodels.

MRMS produces four QPE products incorporating dif-

ferent inputs: radar-only, gauge-only, gauge-adjusted ra-

dar, and Mountain Mapper. In this paper we will focus

on the evaluation of the latter two products, that is, the

gauge-adjusted radar and Mountain Mapper. Given the

generally sparse distribution of gauges and low radar

coverage in the basin, the products incorporating themost

available data are likely the most reliable options.

1) MRMS GAUGE-ADJUSTED RADAR

The MRMS gauge-corrected radar product (MRMS-

GC) ingests radar reflectivity data from the U.S. WSR-

88D network as well as C-band radars from Environment

Canada (nowEnvironment andClimate Change Canada),

resulting in a spatial domain covering the continental

United States (CONUS) and southern Canada. Radar

coverage is often unreliable in the western United States

due to beam blockage by the terrain (Maddox et al. 2002),

and radar-based QPE products have several sources of

uncertainty, including calibration errors, nonprecipitating

echoes (i.e., clutter),Z–R relationship uncertainty, vertical

variability of the precipitation, precipitation drift due to

wind, and sampling errors (Fabry et al. 1994; Villarini and

Krajewski 2010; Zhang et al. 2014). Several automated

steps are taken to mitigate these uncertainties in the

MRMS products, including the use of dual-polarization

radar variables to identify nonhydrometeor echoes, a

Radar Quality Index (RQI) that identifies quality issues

associated with beam blockage and beam spreading, and

the use of five different Z–R relationships for use with

different precipitation types (Zhang et al. 2016).

Radar-based estimates of precipitation are adjusted

using a network of approximately 7000 gauges from the

Hydrometeorological Automated Data System (HADS)

network (Kim et al. 2009). Like radar, gauge estimates

are subject to many sources of uncertainty including

calibration issues, undercatch due to wind, frozen gauges,

clogged gauges, power failures, and evaporative losses

(Ciach 2003; Daly et al. 2017; Habib et al. 2001; Kim et al.

2009; Qi et al. 2016). The MRMS algorithm performs an

automated HADS quality control (QC) process prior to

adjusting the radar-based rainfall estimates. This process

compares the gauges to collocated radar pixels that have

an RQI greater than 0.1 (on a 0–1 scale) and identifies

gauges with false zero values, falsely identified pre-

cipitation, and rain rates that are too high or too low
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compared to the radar. For gauges in areas with RQI less

than 0.1, several checks on the gauge data are still per-

formed, including the use of surface wet-bulb tempera-

ture output from the Rapid Update Cycle (RUC) model

to identify areas of potentially frozen precipitation and

remove data from gauges that likely represent snow and

ice, and flagging gauges with hourly rainfall exceeding

2 in. (50.8mm) as being possible extreme values (Zhang

et al. 2016).

Hourly analyses of temperature and wet-bulb tem-

perature from the RUC are also used to determine

freezing level (i.e., height of the melting layer) in addi-

tion to the potential for frozen precipitation at the sur-

face. Humidity and wind fields are also used to identify

areas of potential precipitation enhancement.

After identifying regions of acceptable radar quality and

applying the automated gauge QC, the gauge-adjustment

of the radar precipitation estimates follows three steps.

First, hourly differences between the radar and gauge are

calculated at gauge locations. These differences are then

interpolated onto the 1-km MRMS grid via inverse dis-

tance weighting. Finally, the interpolated difference field

is subtracted from the radarQPE field (Zhang et al. 2016).

The resultingMRMS-GCproduct is available as estimates

of hourly accumulation that are updated every 2min.

2) MRMS MOUNTAIN MAPPER

The MRMSMountain Mapper product (MRMS-MM)

interpolates the HADS gauge data to nongauge locations

and adjusts for orography using the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM;

Daly et al. 1994, 2017), which uses a digital elevation

model (DEM) to calculate linear relationships between

precipitation and elevation at monthly and annual scales.

Zhang et al. (2014, 2016) found Mountain Mapper QPEs

to be consistently better than radar-based precipitation

estimates in regions where radar coverage is unreliable,

such as the western United States.

The application of the precipitation–elevation ad-

justment to the gauge-only analysis to produce MRMS-

MM is similar to that used to apply gauge adjustment to

the radar-only QPE to produce the MRMS-GC. The

ratio between quality-controlled hourly gauge observa-

tions and collocated grid points in the PRISM clima-

tology is calculated and then interpolated using inverse

distance weighting onto the 1-km MRMS grid.

b. HMT gauges

The Physical Sciences Division at NOAA/ESRL

operates a number of rain gauges in the western United

States, with additional gauges available via collabora-

tions with Western Weather and RRHBN. These net-

works combined provide 33 gauges in the Russian River

basin and vicinity (Fig. 1a). Because a majority of the

gauges are located in the valley along the river, addi-

tional gauges just outside the basin [Cazadero (CZC),

Occidental (OCL), and Middletown (MDT)] are also

included to provide precipitation estimates at higher

elevations. The HMT gauges are not part of the HADS

network and are not incorporated into the MRMS

products, making this network useful for comparison to

the MRMS QPEs.

Although the HMT gauge network is generally well

maintained by PSD staff, the gauges are not immune from

the uncertainties typical to gauge networks (Ciach 2003;

Habib et al. 2001; Qi et al. 2016; Kim et al. 2009; Daly et al.

2017). Therefore, manual quality control partially follow-

ing the methodology of Blenkinsop et al. (2017) was per-

formed on the gauges and any questionable data were

removed. First, gaugeswere removed fromconsideration if

more than 25% of hourly observations during their period

of recordwasmissing (two gauges removed). Then, gauges

were flagged when their hourly or daily accumulated pre-

cipitation exceeded record maxima (as reported by the

NWS) by more than 20%. Additionally, 6-hourly accu-

mulation totals were compared to both neighboring gauges

and 6-hourlyNCEPStage IVQPE (Lin andMitchell 2005;

Nelson et al. 2016). Gauges that either indicated zero ac-

cumulationwhen both Stage IVand its neighbors recorded

rainfall or had suspicious repeated values when both Stage

IV and its neighbors indicated no rain were flagged. A

gauge flagged as questionable for any period of a pre-

cipitating event was removed from consideration for the

entirety of that event, thus reducing the chance of in-

cluding data that may have been part of the QC issue but

was not obviously flagged. Overall, 22 events had at least

one gauge removed from consideration, with 6 gauges

omitted for more than one event.

c. S-band vertical profiling radars

The HMT rain gauges at CZC, MDT, Hopland (HOP),

and Santa Rosa (STR) are collocated with S-band (l 5
10 cm) vertical profiling radars (Ecklund et al. 1999;

White et al. 2000) that provide a continuous view of the

vertical structure and evolution of precipitating systems

that pass over them. The vertical profiles of reflectivity

and velocity can be used to determine the presence and

location of the bright band, a layer of enhanced re-

flectivity caused by melting hydrometeors (White et al.

2002). Data from these radars will be used in section 5c

to discuss vertical rainfall characteristics and how they

relate to MRMS QPE performance.

d. Reanalysis data

Reanalysis data were used to examine the synoptic

and mesoscale characteristics of the events impacting
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the Russian River basin as they pertain to MRMS per-

formance. For synoptic conditions, 6-hourly analysis

fields of integrated vapor transport (IVT), total pre-

cipitable water (TPW), 500-hPa geopotential height,

mean sea level pressure (MSLP), 10-m wind, and

250-hPa wind from the ERA-Interim reanalysis (Dee

et al. 2011) were examined on a 0.58 grid. To further

examine how near-surface winds interacted with the

complex small-scale terrain features in and around the

basin, 10-m winds at 2.5-km resolution were also ob-

tained from the NCEP Real-Time Mesoscale Analysis

(RTMA; De Pondeca et al. 2011).

3. Methods

Over the course of the 2015/16 and 2016/17 wet sea-

sons (October–March), precipitating events impacting

the Russian River basin were identified using the

MRMS-GC product in a manner similar to that de-

scribed by Lamjiri et al. (2017). Events are characterized

by eight or more continuous hours where at least one

grid point within the basin received at least 0.254mm of

precipitation (the minimum detectable by gauge). A

new event begins following a period of at least 6 h with

no precipitation within the basin. Rain-free periods of

less than 6h were included within an encompassing

event. Once identified, only events where total accu-

mulation exceeds 5mm for at least one of the HMT

gauge sites are considered. In this way, we attempt to

evaluate only the most impactful events, while avoiding

events with very short duration, small spatial coverage,

or scattered rain, all of which would have significant

uncertainty due to the sampling limitations of both the

MRMS and HMT gauges. Events with large quantities

of missing data from the MRMS-GC, MRMS-MM, or

HMT gauges were also removed from consideration,

resulting in 44 unique events (25 in the first season and

19 in the second) for assessment.

Following QC of the HMT data and identification of

events, the storm total rainfall for each of the MRMS

products (MM and GC) was compared to that from

the HMT gauges. Because of the large variability in

storm duration and intensity (and therefore total ac-

cumulation), all values were normalized by the maxi-

mum accumulation at any HMT gauge for each event.

The event maximum accumulation occurs at the high-

elevation gauges at either MDT or CZC in 50% of

the cases, and in the Redwood/Potter Valleys (RVW,

POV, and neighboring gauges in Fig. 1a) in 20% of

the cases. This normalization results in gauge values

from 0 to 1 and MRMS values generally falling within

the same range, with some events having values

greater than 1.

4. Results

Using the normalized event total rainfall to calculate

the correlation coefficient r2 and linear fit of the MRMS

data to the gauge observations, a pattern quickly emerged

in scatterplots comparing the MRMS QPEs to that ob-

served at HMT gauge sites. MRMS representation of

normalized event total rainfall in the Russian River basin

fell into one of two general categories, examples of which

are shown in Fig. 2. In Fig. 2a, both the MRMS-GC and

MRMS-MM products are well correlated to the gauges,

with both r2 and the slopem of the linear fit between the

gridded products and the gauges greater than 0.5. On the

other hand, the comparison in Fig. 2c shows a fairly flat

distribution, andwhen compared to theHMTgauges both

the MRMS-GC and MRMS-MM products have a slope

less than 0.45, regardless of r2. Using these numerical

definitions, 42 of the 44 cases were categorized as either

‘‘well-correlated’’ (both r2 andm. 0.5) or ‘‘uncorrelated’’

(m , 0.45). The remaining two cases were eventually

categorized by comparing the spatial distribution of pre-

cipitation during these events to the composite spatial

distributions of the clearly defined events (Fig. 4).

Roughly half of the cases fit into each category: 21 well-

correlated events and 23 uncorrelated events. Figures 2b

and 2d show the average normalized event total rainfall

for the two categories, which retain characteristics sim-

ilar to the example cases shown in Figs. 2a and 2c.

Figure 3 displays box-and-whisker plots of storm char-

acteristics for the two categories of events as observed by

the HMT gauges. Boxes indicate the interquartile range

(IQR), with the median indicated by the horizontal line.

Whiskers show the range of the data, with outliers

exceeding the 25th and 75th percentiles by 1.5 3 IQR.

Figure 3c shows all gauges individually for each event

(;1400 data points), so the seemingly large number of

outliers is a representation of the highly variable nature of

the spatial distribution of precipitation in the basin. In

general, well-correlated events have median duration

;10h longer than the uncorrelated cases. They also pro-

duce more intense rainfall: median values of both total

accumulation and hourly intensities are approximately 1.6

times their uncorrelated counterparts. These characteris-

tics are common in all three datasets [HMT gauges

and both MRMS QPEs (not shown)]. Although the un-

correlated cases are typically less intense than well-

correlated cases, they produce on average over 30% of

the precipitation recorded at the HMT gauges. To in-

vestigate possible reasons for the two behavior patterns,

we examine the spatial distribution of rainfall for thewell-

correlated and uncorrelated cases. The average normal-

ized event total rainfall at each gauge station indicates

distinct differences in the spatial distribution of rainfall
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between the well-correlated and uncorrelated cases

(Fig. 4).Well-correlated cases tend to havemaximum total

rainfall at the MDT gauge (average normalized total

of 0.8), which is not unexpected since it is the highest-

elevation gauge site (Figs. 1a, 4a). CZC, another high-

elevation HMT gauge site near the coast, receives the

second-highest average normalized total rainfall in well-

correlated cases (;0.68). Within the valley itself, rainfall

at HMT gauge sites is relatively uniform and widespread,

with most gauges receiving on average 40%–50% of the

basinmaximum,with up to 60% in the higher elevations to

the north. The MRMS-MM product shows a similar pat-

tern to the gauges (Fig. 4c), with the highest values atMDT

and CZC (;0.7 and ;0.6, respectively), and normalized

rainfall of approximately 0.4–0.5 within the rest of the

valley. In the MRMS-GC product (Fig. 4b), MDT is still

among the highest amounts, but nearly all of the remaining

gauge sites show an average ratio of ;0.45 of the basin

maximum accumulation. Overall, for well-correlated ca-

ses, both the HMT gauges and MRMS QPE products in-

dicate fairly widespread and uniform rainfall throughout

the basin with enhancement at higher elevations, with the

FIG. 2. Normalized event total rainfall from MRMS-GC (blue) and MRMS-MM (gray) compared to HMT

gauges. (a) Example well-correlated case from January 2016, with both r2 and m . 0.5. (c) Example uncorre-

lated case from February 2017 with m , 0.45. Average normalized event total rainfall at each gauge site for

(b) well-correlated and (d) uncorrelated cases.
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exception of the MRMS-GC at the northern edge of

the basin.

For events where MRMS compares poorly to the

gauge observations (Figs. 4d–f), the HMT gauges still

indicate a maximum of;0.75 at MDT, with a secondary

maximumof;0.65 at gauges located in the terrain to the

north, in the Redwood and Potter Valleys (Fig. 4d).

With the exception of the MDT site, there appears

to be a north to south decrease in accumulated pre-

cipitation. This may represent a different spatial distri-

bution of rainfall than the well-correlated cases, or, since

elevation increases to the north, it could also be an en-

hancement of the precipitation–elevation relationship.

While the MRMS-MM product indicates a decrease

from 0.55 in the north to ;0.3 in the south (Fig. 4f), the

pattern is not nearly as strong as that indicated by the

HMT gauges (Fig. 4d). The MRMS-GC product does

not capture this distribution at all, showing an evenmore

uniform distribution throughout the basin than for the

well-correlated cases (Fig. 4e).

The composites shown in Fig. 4 raise two questions

about the spatial distributions of rainfall and the ability

of the MRMS products to capture them. First, is the

distribution of the uncorrelated cases simply a more

longitudinally oriented distribution, or is the north–

south distribution related to an enhancement of the

precipitation–elevation relationship? Second, is the

favorable comparison between the HMT gauges and

FIG. 3. Event characteristics at HMT gauges for well-correlated and uncorrelated cases: (a) event duration,

(b) maximum accumulated rainfall recorded by any gauge within the basin, (c) event total rainfall at all gauge

locations, and (d) mean hourly rainfall in the basin during each event. Boxes indicate the IQR, and median is

indicated by the horizontal line. Whiskers show the range of the data, with outliers exceeding the 25th and 75th

percentiles by 1.5 3 IQR.
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MRMS-MM in the well-correlated cases due to a pre-

cipitation distribution that is more similar to the PRISM

climatology (which is used to produce MRMS-MM)

than that in the uncorrelated cases? Figures 5 and 6 shed

some light on these questions.

Figure 5 shows the mean normalized event total

rainfall at gauge locations in 100-m-elevation bins with

corresponding linear fits. In the well-correlated cases

(Fig. 5a), the MRMS-MM product matches the HMT

gauge observations fairly well with a slightly lower slope,

while the MRMS-GC product has quite a bit lower slope.

For the uncorrelated cases (Fig. 5b), the fit to the HMT

gauge observations has both a lower y intercept and

a steeper slope, suggesting some strengthening of the

precipitation–elevation relationship. In contrast, both the

MRMS-MM and MRMS-GC products demonstrate a re-

duction in the slope of the linear fit compared to the well-

correlated cases. While theMRMS-MM does still have an

FIG. 4. Composite (average) normalized total rainfall at HMT gauge locations for (a)–(c) well-correlated and (d)–(f) uncorrelated cases

from (left) HMT gauges, (center) MRMS-GC, and (right) MRMS-MM.
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increase in mean normalized rainfall with elevation, the

MRMS-GC product shows practically no relationship.

The similarity between the MRMS-MM and the HMT

gauges in the well-correlated cases suggests that the spa-

tial distribution of rainfall during well-correlated cases

might be more similar to the spatial distribution of rainfall

from thePRISMclimatology. Figure 6a shows the average

cold season PRISM climatology, calculated using the

monthly climatologies from October through March,

while Fig. 6b shows the average of the normalized

monthly climatologies over the same period (calculated

by dividing each monthly climatology by the monthly

maximum value within the domain). When compared

to the composites from the HMT gauges shown in Figs.

4a and 4d, the distribution of rainfall during the well-

correlated cases is more similar to the PRISM climatology

than that of the uncorrelated cases. In particular, the

PRISM climatology indicates the same high-elevation

maxima at MDT and CZC (although CZC has larger

values in PRISM), and the same moderate, relatively

uniform rainfall through the middle of the basin, partic-

ularly in the region between MDT and CZD. While

PRISMdoes indicate some increase in rainfall at the north

end of the basin, it is less than that seen in the uncorrelated

case composites, and shows the same west to east pre-

cipitation gradient through the Redwood and Potter

Valleys as the well-correlated HMT gauge composite.

Figure 6c compares the average normalized rainfall at

gauge sites during well-correlated and uncorrelated cases

to the same from PRISM (i.e., Figs. 4a and 4d vs Fig. 6b).

The averaged normalized rainfall at gauge locations

compares more favorably to the PRISM climatology

during the well-correlated cases, with a correlation of

0.672. During the uncorrelated cases the correlation drops

to 0.570. As Fig. 3 shows, well-correlated cases are typi-

cally longer duration events with larger amounts of overall

total rainfall, producing an average of 70% of the rainfall

at HMT gauge sites, so it would be expected that these

types of cases dominate the climatological distribution.

5. Discussion

Examinations of normalized event total rainfall in-

dicate that there are two general categories of storm that

impact the Russian River basin during the cold season,

and that MRMS QPE products typically more accu-

rately represent the spatial distribution and total

amount of rainfall for one type of event over the other

(i.e., well-correlated versus uncorrelated cases). In this

section, we compare some of the synoptic, mesoscale,

and storm-scale characteristics of the two types of

storms that occurred during the 2015/16 and 2016/17

seasons.

a. Synoptic patterns

Composite maps of relevant atmospheric properties

were produced for both the well-correlated and un-

correlated events using 6-hourly analysis fields from the

ERA-Interim reanalysis (Dee et al. 2011). Composites

show the mean conditions over the western United

States and eastern Pacific Ocean both prior to and

during the events in order to examine the development

of the storms.

The most significant difference in the synoptic pat-

terns of the well-correlated and uncorrelated cases is

FIG. 5. Average normalized total rainfall in 100-m-elevation bins

for (a) well-correlated and (b) uncorrelated events. Linear fits and

corresponding equations are shown for HMT gauges (black ‘‘X’’s),

MRMS-MM (gray dots), and MRMS-GC (blue dots).
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found in the MSLP, shown in Fig. 7 at the time of

maximum average precipitation in the basin as indicated

by the HMT gauges. The well-correlated cases feature a

large subtropical high pressure system situated well off

the coast, with a trough axis along the coast associated

with an extratropical cyclone in the Gulf of Alaska

(Fig. 7a). The uncorrelated cases feature a stronger,

broader high pressure system extending onshore and

FIG. 6. (a) Average cool season (October–March) rainfall from the PRISM climatology, and (b) the average

normalized cool season rainfall. Black dots represent the location of HMT gauges. (c) Comparison of the average

normalized PRISM cool season rainfall to the average normalized HMT gauge rainfall for both well-correlated

and uncorrelated cases, with the 1–1 line indicated.
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into the Great basin (Fig. 7b) and a stronger extra-

tropical cyclone in the Gulf of Alaska than that found in

the well-correlated cases, producing a larger pressure

gradient along the Washington and Oregon coasts and a

more zonally oriented trough axis that does not quite

make it to the coast of northern California.

The surface pattern is reflected in the 500-hPa geo-

potential height composites from the same time (Fig. 8),

with a 500-hPa trough situated just off the coast during

the well-correlated events, and a more zonal pattern im-

pacting coastal California during the uncorrelated cases,

which also feature a broader ridge–trough pattern.

The patterns shown in Figs. 7 and 8 compare well to

Figs. 6 and 7 from Neiman et al. (2008), who examined 8

years of wintertime (DJF) and summertime (JJA) land-

falling ARs along the west coast of North America, cat-

egorizing them as making landfall north of 41.08N or

making landfall between 32.58 and 41.08N. Though the

current study focuses on a longer 6-month cool season as

opposed to the 3-month temporal average from Neiman

et al. (2008), the surface and 500-hPa synoptic pattern of

the well-correlated events shown in Figs. 7 and 8 are very

similar to the corresponding wintertime composites for

ARs making landfall in the Neiman et al. (2008) southern

domain. Similarly, the composite patterns for the un-

correlated events resemble the corresponding Neiman

et al. (2008) composites for ARs making landfall in their

northern domain.

The IVT composites over the entire duration of the

uncorrelated and well-correlated events also share simi-

larities with the north- and south-landfalling ARs dis-

cussed in Neiman et al. (2008) and are shown in Fig. 9. In

the IVT composites, the uncorrelated cases (Fig. 9b)

have a wide swath of IVT exceeding 250kgm21 s21 im-

pactingmuch of theU.S.West Coast.While there is some

increased vapor transport extending into Northern

California, the strongest IVT during the uncorrelated ca-

ses is concentrated farther north. The composite IVT for

the well-correlated cases (Fig. 9a) is more narrow, smaller

inmagnitude, and the center of the IVTplume impacts the

coast somewhat farther south. Compared to the IVT

analysis shown in Fig. 3 of Neiman et al. (2008), the un-

correlated case distribution of IVT is quite similar to that

of the northward landfalling ARs, which had higher IVT

magnitudes than ARs making landfall in their southern

domain. While the maximum IVT of ;300kgm21 s21 in

the well-correlated case composite appears to be focused

somewhat south of the Bay Area, the average IVT in the

Russian River basin is similar in the two scenarios

(;200kgm21 s21 in the well-correlated cases versus

;230kgm21 s21 for the uncorrelated cases). Ralph et al.

(2013) showed that ARs making landfall in DJF had the

lowest integrated water vapor of any season, but the

strongest upslope wind component and longest duration.

In the well-correlated cases, the IVT affecting northern

California is more perpendicular to the coastline (and

terrain) than in the uncorrelated cases. In well-correlated

cases, the strong orographic enhancement over longer

storm duration makes up for the lower IVT compared to

the uncorrelated cases, resulting in more total rainfall.

Furthermore, while cool season rainfall in the Russian

River basin is often associated with landfalling ARs, there

is potential for non-AR storms to be included in the

analysis, which may dilute the north versus south signal in

the IVT composites.

The well-correlated and uncorrelated cases also share

synoptic-scale similarities with AR events examined by

Hecht and Cordeira (2017), who clustered landfalling

ARs by their IVT direction and magnitude along the

California coast and examine in detail the AR clusters

FIG. 7. Composite MSLP (hPa) from ERA-Interim at the time of maximum basin average rainfall for

(a) well-correlated and (b) uncorrelated cases.
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with westerly and south/southwesterly orientations to

the coast. Members of the south/southwesterly cluster

share similar synoptic conditions and composite rainfall

distributions (i.e., relatively widespread) with the well-

correlated cases discussed herein, while the westerly-

oriented cluster has a synoptic setup and north–south

decrease in basin precipitation consistent with the un-

correlated cases (their Figs. 2 and 3).

The similarities between the current results and those

from previous studies imply that the well-correlated cases

are typically associated with ARs that make landfall

along the California coast while the uncorrelated events

are typically associated with ARs that make landfall

farther north. To confirm this hypothesis, 0000 and

1200 UTC analysis fields from the AR Detection Tool

(ARDT; Wick et al. 2013; https://www.esrl.noaa.gov/psd/

psd2/coastal/satres/data/html/ar_detect_gfs.php) were

examined to subjectively determine if and where ARs

made landfall during each of the 44 events considered

in this study. The ARDT uses GFS model output of

TPW and IVT to identify the presence and axis of ARs

in the eastern Pacific. The use of GFS model output

results in fairly coarse temporal resolution, and there-

fore some cases’ landfall could not be determined be-

cause it may have occurred betweenmodel runs. Figure 10

shows how many well-correlated and uncorrelated cases

FIG. 8. As in Fig. 7, but for 500-hPa geopotential height (m).

FIG. 9. As in Fig. 7, but for IVT (kgm21 s21) over the entire duration of the cases.
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were classifiedusing theARDTas landfalling inCalifornia,

landfalling in the Pacific Northwest, or undetermined, and

indicates that there is some support for the hypothesis that

well-correlated events feature ARs that make landfall

along the California coast, while uncorrelated events are

more often associated with ARs making landfall along the

Pacific Northwest coast.

The similarities between the composite conditions

discussed above and those shown in Neiman et al. (2008)

and Hecht and Cordeira (2017), combined with the re-

sults from the ARDT suggest that, in the Russian River

Valley, the MRMS QPE products are typically more

reliable during AR events that make landfall at or near

the California coastline, but less reliable during AR

events that make landfall farther north. Since much of

the rainfall during the cool season is associated with

ARs and more rain is likely when the associated plume

of moisture encounters more orographic forcing, the

PRISM climatology would likely be more similar to

these types of systems, resulting in MRMS-MM QPEs

that compare more favorably to the HMT gauges under

such conditions. The rainfall occurring as a result of ARs

making landfall farther north near the Canadian border

would likely be more transient and disorganized since it

is associated with the outer reaches of its parent mois-

ture plume. With the main corridor of IVT to the north,

it would also make sense to see rainfall decreasing to-

ward the south as is found in the uncorrelated cases.

The distribution of rainfall within the basin and syn-

optic setups that produce events that are more similar to

the PRISM climatology provide good evidence as to

why the MRMS-MM product more closely matches

the HMT gauges during these events than it does for the

cases that appear to be a result of ARs affecting the

Pacific Northwest. The MRMS-GC product is not de-

pendent on climatology, however, andwe therefore look

to smaller scales to gain insight to its performance.

b. Mesoscale winds

At the basin scale, terrain interaction likely influences

the spatial distribution of precipitation. Because ERA-

Interim has relatively coarse resolution, we use the

RTMA (De Pondeca et al. 2011) at 2.5-km resolution to

examine the 10-m winds in the Russian River basin at

the time of maximum basin average rainfall (Fig. 11).

Wind barbs are overlaid on the terrain, with the Russian

River basin outlined. Barbs represent 1/10 the standard

values (i.e., 0.5, 1.0, and 5.0m s21). Although the RTMA

data is 2.5-km resolution, wind barbs are plotted every

;10 km for easier viewing (Figs. 11a,c), and at the gauge

locations to highlight possible small-scale terrain in-

teraction affecting measured precipitation at the gauges

(Figs. 11b,d).

At the time of maximum rainfall intensity in the basin,

offshore winds are south-southwesterly in the well-

correlated cases and southerly in the uncorrelated

cases with intensities of 51 ms21 (Figs. 11a,c). These

winds extend onshore and into the southern part of the

basin through a relative low spot in the terrain. In the

well-correlated cases, winds entering the southern edge

of the basin are 1–2ms21 stronger than in uncorrelated

cases, potentially transporting more moisture inland

from the coast. These winds converge with slower winds

near Healdsburg (HOF in Fig. 1a), possibly contributing

to somewhat enhanced rain rates through this part of the

basin as seen in Fig. 4a. In contrast, 1–1.5m s21 winds

entering the southern part of the basin during the un-

correlated cases encounter divergence nearHOF, where

winds increase to 2.5–3ms21, which may contribute to

the lighter rainfall seen in this region in Fig. 4d.

Through the narrowest portion of the basin, winds in

both the well-correlated and uncorrelated events feature

downslope from the western rim, upslope on the eastern

edge, and up-valley flow through the middle. However,

farther north the two patterns again differ. In the well-

correlated cases the southerly up-valley flow remains,

resulting in generally weak orographic enhancement at

the northernmost gauge sites. In the uncorrelated cases a

more westerly flow prevails, which may result in stronger

orographic precipitation enhancement as it encounters

both the ridge dividing the Redwood and Potter Valleys

and the more significant terrain increases to the east of

the basin. This pattern is most apparent when viewing

winds at the individual gauge locations in Figs. 11b

and 11d.

The interaction of the near-surface flow with small-

scale terrain features appears to have the expected

FIG. 10. Number of well-correlated and uncorrelated events de-

termined to have made landfall along the coast of California, the

PacificNorthwest, or that could not be determined using theARDT.
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FIG. 11. RTMA 2.5-km gridded 10-m wind composites at the time of maximum basin average rainfall for

(a) well-correlated and (c) uncorrelated cases. (b),(d) As in (a) and (c), but for gauge locations only. Barbs

represent 1/10 the standard values (i.e., 0.5, 1.0, and 5.0m s21), and color shading indicates elevation.
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effects given our understanding of orographic pre-

cipitation enhancement. Small-scale shifts in airflow can

result in gauges in close proximity to one another re-

ceiving widely varying rainfall amounts. It is possible

that these small-scale variations could invalidate the

typical inverse distance weighting functions used to in-

terpolate the HADS gauge data to the MRMS grid. The

MRMS-GC product is also highly dependent on radar,

even in regions where the radar may not be completely

reliable. Therefore, in the next section we examine data

from the four profiling radars at the CZC, MDT, HOP,

and STR HMT gauge sites.

c. Storm scale

While the four profiling radars operated by PSD in

and near the Russian River basin can be used to com-

pare instantaneous rain rates and vertical profiles of

reflectivity with WSR-88D pixels in the same location,

we continue assessing the two categories of events in a

more composite sense, using the data to determine the

presence and height of a reflectivity bright band. As

discussed, the nearest operational weather radar to

the Russian River Valley is over 100 km away, and the

lowest-elevation scan angle is mostly blocked by the

terrain. This complicates radar-basedQPEs in the basin,

as the beam either intersects the storm at or above the

bright band so the observed reflectivity is not repre-

sentative of surface rainfall, or the beam is sufficiently

high off the ground to miss shallow rainfall entirely. The

MRMS radar-based QPE algorithm automatically ac-

counts for intersection with the upper levels of the storm

with an apparent vertical profile of reflectivity (VPR)

correction (Zhang et al. 2016), but the latter issue lacks a

feasible solution. The presence of a bright band and an

estimate of its height within the storm can provide some

insight into the type of precipitation falling and whether

we expect the WSR-88D to capture it.

Figure 12 displays box-and-whisker plots (as in Fig. 3)

of the mean hourly height (km AGL) of the bright band

(when present) and the percent of event total rainfall

that occurred in the absence of a bright band [i.e., non-

brightband (NBB) rain; White et al. 2003] at each of the

profiling radar locations for the well-correlated and

uncorrelated events.

FIG. 12. Box-and-whisker plots (as in Fig. 3) for (a) mean brightband height (km AGL) and

(b) the percent of total rainfall that fell as NBB rain for both well-correlated (white) and

uncorrelated (gray) cases at the four HMT profiling radar sites.
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Figure 12a shows that median brightband heights are

typically between 1 and 2km AGL, and that well-

correlated cases have lower median brightband heights

with smaller IQR than uncorrelated cases. The two oper-

ational radars closest to the basin are KDAX to the east

and San Francisco, California (KMUX), to the south. The

lowest elevation scan of KMUX is more than 3km AGL

over the basin, significantly higher than the median

brightband heights for all cases at each profiler site. White

et al. (2003) cite a February 1998 case in which the KMUX

radar completely overshot a shallow precipitating system

that produced significant rainfall in Cazadero, however

Matrosov et al. (2014) found that in the event of deeper

precipitating systems, KMUX may observe precipitation

in higher regions of the stormand provide reasonableQPE

after an appropriateVPR correction is applied. The lowest

scan of the KDAX radar is approximately 1km AGL in

the basin, but is mostly blocked by the terrain (Fig. 1b).

Where the lowest scan from the KDAX radar is un-

obstructed, there is a good chance of observing brightband

precipitation in the Russian River basin.

Perhaps the most telling result from Fig. 12 is that the

uncorrelated cases typically receive a much larger per-

centage of their total rainfall from NBB rain than the

well-correlated cases (Fig. 12b). When combined with

the height of the radar beams, the significant fraction of

NBB rain observed during the uncorrelated cases sug-

gests storms with a significant portion of their rainfall

unobserved by the radar, consistent with Matrosov

et al.’s (2014) finding that 30%of the hours experiencing

NBB rain at Cazadero were not detected by the opera-

tional radars. Since the MRMS algorithm uses radar to

QC the HADS gauges when RQI is greater than 0.1,

gauge observations correctly identifying rainfall are

potentially being discarded when the radar senses above

the storm and indicates zero precipitation, resulting in

significant underestimation in the MRMS-GC product.

The MRMS-MM product does not exhibit as much

degradation in quality as the MRMS-GC because the

adjustment for elevation partially mitigates the reduced

gauge influence.

Figure 13 shows an example of this phenomenon

during an uncorrelated case at two profilers [Hopland

(Fig. 13a) and Santa Rosa (Fig. 13b)] that have a HADS

gauge located nearby. Hourly rainfall from the HMT

and HADS gauges as well as the MRMS-MM and

MRMS-GC is shown beginning at 2100 UTC 8 January

2016 and ending at 0500 UTC 10 January 2016. Hourly

FIG. 13. Hourly rainfall from HMT gauges (black), MRMS-GC (gray solid), MRMS-MM (gray dashed), and

nearby HADS gauges (red dotted) at (a) Hopland and (b) Santa Rosa. Stars indicate the height of the bright band

detected by the HOP and STR profiling radars.
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mean brightband height from the collocated profiling

radar is also shown. The Hopland profiler detects a

bright band starting at 0100 UTC 9 January and the

MRMS-GC begins indicating rainfall an hour before

theHMTgauge and 2h before either theMRMS-MMor

the HADS gauge. After 1200 UTC 9 January, the pro-

filer indicates the presence of a bright band for only 2 h.

While both gauges continue to measure precipitation

during this time, neither MRMS product shows any ac-

cumulation for the remainder of the event. Similarly, at

Santa Rosa, bothMRMS products indicate precipitation

duringmost of the hours when a bright band is observed,

with the MRMS-GC estimating nearly twice as much

hourly rainfall as the products with no radar influence.

No bright band is detected after 1300 UTC 9 January

and while the gauges accumulate several millimeters of

rainfall during the remainder of the event, the MRMS

products show less than 0.5mm falling after this time.

Figure 14 compares hours identified as having either

brightband or non-brightband rain at the four profiling

radar sites. Mean hourly rainfall at HMT gauges for

hours with a detected bright band is 1.69mm and is

0.54mm during hours with NBB rain. Biases for the

MRMS-MM and MRMS-GC are 212% and 26%, re-

spectively, during hours when a bright band was de-

tected. During hours with NBB rain, the MRMS-GC

bias is 239% and the MRMS-MM bias is 217%.

6. Summary and conclusions

In this study we identified 44 precipitating events in

the Russian River basin during the 2015/16 and 2016/

17 wet seasons. Event total QPE from two MRMS

products, the gauge-corrected radar and Mountain

Mapper, was compared to the relatively dense network

of HMT gauges. The HMT gauges were subjected to

manual quality control and are independent of the gauge

networks used to create the MRMS products. With re-

spect to the HMT gauges, theMRMS products captured

event total rainfall with varying degrees of accuracy, but

generally either captured the spatial distribution and

intensity of rainfall fairly well (i.e., well-correlated), or

captured neither the spatial distribution nor had much

variability within the basin (i.e., uncorrelated). For the

well-correlated cases, the composite spatial distribution

of rainfall from the HMT gauges showed a fairly mod-

erate distribution of rainfall with terrain-induced max-

ima similar to the PRISM climatology, and showed a

north-to-south decrease in precipitation within the basin

for the uncorrelated cases. Because of the general de-

crease in elevation from the source of the Russian River

in the north toward the mouth in the south, it appears

this may be due to an enhancement in the climatological

orographic influence on precipitation amount, but it is

difficult to definitively determine if this is the case.

There are a number of intricacies to rainfall behavior

in the Russian River basin, and no two events are alike.

However, by looking at composite behavior over a

number of events, we can gain some understanding of

the general behavior of MRMS QPEs during different

types of storm systems. By examining the composite

atmospheric properties at a variety of scales for the two

types of cases, it is inferred that the performance of the

MRMS in the Russian River basin is affected by the

location of AR landfall, specifically whether the event

was associated with an AR making landfall on the

FIG. 14. Hourly precipitation estimates for all cases at the four HMT gauge sites collocated with a profiling radar

for (a) hours when a bright band was detected and (b) hours with no bright band.
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California coast, or farther north along the coast of

Washington, Oregon, or British Columbia. ARs making

landfall along the California coast typically resulted in

a spatial distribution of rainfall more similar to the

PRISM climatology, while those making landfall farther

north produced a more north–south gradient in pre-

cipitation. This affects the applicability of the PRISM

precipitation–elevation adjustment used in the MRMS-

MM products.

At the basin scale, the two types of systems showed

near-surface wind patterns featuring small-scale areas of

convergence, divergence, and terrain interactions that

likely contributed to the differing spatial distributions of

the precipitation and level of similarity with the PRISM

climatology. Profiling radar observations at four HMT

gauge sites indicated that a larger fraction of the pre-

cipitation during uncorrelated events fell as NBB rain

that may have been undetected by operational radars, in

turn reducing the amount of precipitation estimated to

have fallen by the MRMS-GC. The specific mechanisms

related to the synoptic- and basin-scale patterns that

produce the differing storm characteristics (BB versus

NBB rain) is reserved for future work.

Understanding the reliability of MRMS products with

regard to larger-scale storm patterns can be helpful to hy-

drologists and water managers requiring accurate QPEs.

For example, in both event types, the MRMS-MM more

closely matched the HMT gauges than the MRMS-GC,

consistent with results found by Schaake et al. (2004),

Zhang et al. (2014), and Zhang et al. (2016). This may be

important for future implementations of the NOAA Na-

tionalWater Model, which currently uses a combination of

MRMS radar-only and MRMS-GC in its analysis cycle.

Additionally, the insight gained in this study can be applied

to studies of QPEs in other basins and larger areas, par-

ticularlywhere the radarmay bemore or less reliable under

certain conditions or where some storms may not exhibit

climatological precipitation–elevation relationships.
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APPENDIX

List of Acronyms

AGL Above ground level

AR Atmospheric river

ARDT Atmospheric River Detection Tool

CONUS Continental United States

DEM Digital elevation model

ESRL Earth System Research Laboratory

HADS Hydrometeorological Automated Data

System

HMT Hydrometeorology Testbed

IQR Interquartile range

IVT Integrated vapor transport

MRMS Multi-Radar/Multi-Sensor

MRMS-GC Gauge-corrected MRMS

MRMS-MM MRMS Mountain Mapper

MSL Mean sea level

MSLP Mean sea level pressure

NBB Non–bright band

NCEP National Centers for Environmental

Prediction

NOAA National Oceanographic and Atmo-

spheric Administration

NWS National Weather Service

PRISM Parameter-Elevation Regressions on

Independent Slopes Model

PSD Physical Sciences Division

QC Quality control

QPE Quantitative precipitation estimation

RRHBN RussianRiverHabitat BlueprintNetwork

RQI Radar Quality Index

RTMA Real-Time Mesoscale Analysis

RUC Rapid Update Cycle

TPW Total precipitable water

VPR Vertical profile of reflectivity
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